Deformation Mechanisms and Rheology of Pre-Cambrian Rocksalt from the South Oman Salt Basin

Deformation Experiments

- **SAMPLE PREPARATION**
- **DEFORMATION PROCEDURE**
- **EXPERIMENTAL SET UP**

Stress/Strain Curves

- Stress-strain curves for the Ara Salt creep experiments. Test parameters are detailed in Table 1.
- A total of 26 creep test samples were tested.
- Three creep experiments were performed at different temperatures: T = 100 °C, T = 80 °C and T = 60 °C.
- The 10% strain is reached within a time of 5000 h, followed by steady state creep.
- The creep test sample ZAZ 02 shows a steady state creep after 5000 h.

Creep Data of the Ara Salt

- Creep test sample ZAZ 02 shows a steady state creep after 5000 h.
- The steady state creep parameters were derived from eq (8) and (9).
- The creep test sample ZAZ 04 shows a steady state creep after 5000 h.

Microstructures

- The microstructure shows a close-packed cubic (ccp) lattice with a high dislocation density.
- The grains are elongated in the direction of applied stress.

CONCLUSIONS

- The rheology of the Ara Salt is comparable with the most common salt rock types and data from this study.
- The creep exponent n = 5, Q = 32400 J mole⁻¹ and A = 1.82 x 10⁻⁹ s⁻¹.
- Separate primary creep parameters have been derived.

Acknowledgments

- We thank the Ministry of Oil and Gas of the Sultanate of Oman and Petroleum Development Oman for granting permission to publish the results of this study as a paper for the 6th Conference on the Mechanical Behaviour of Salt (SaltMech6), Hannover, Germany.