Pressure Generation and Deflation Mechanisms in Deeply Buried Intra-Salt Reservoirs of the Late Neoproterozoic to Early Cambrian South Oman Salt Basin*

Peter A. Kukla¹, Lars Reuning¹, Stephan Becker¹, Janos L. Urai¹, and Johannes Schoenherr²

Search and Discovery Article #41112 (2012)
Posted December 31, 2012

¹Energy & Mineral Resources, RWTH Aachen University, Aachen, Germany (kukla@geol.rwth-aachen.de)
²ExxonMobil Production Deutschland GmbH (EMPG), Hannover, Germany

Abstract

Late Neoproterozoic to early Cambrian intra-salt Ara reservoirs of the South Oman Salt Basin represent a unique self-charging petroleum play with respect to hydrocarbon and overpressure generation and dissipation. Reservoir bodies (termed "stringers") are isolated in salt and frequently contain low permeable dolomites that are characterised by high initial production rates due to hard overpressures.

A database of more than 30 wells has been utilised to understand the distribution and generation of overpressures in intra-salt reservoirs that can be separated by up to 350 metres of salt. A temporal relationship of increasingly overpressured and compartmentalized reservoirs within stratigraphically younger units is observed, and two distinctly independent trends emerge from the Oman dataset; one hydrostatic to slightly above hydrostatic, and one overpressured from 17 to 22 kPa/m, almost at lithostatic pressures.

Structural, petrophysical and seismic data analysis suggests that overpressure generation is driven by fast burial of the stringers in salt, with a significant contribution by thermal fluid effects and kerogen conversion. Pyrobitumen confirms local contribution by a high-temperature hydrothermal event. Structural and geometric information indicate that present day hydrostatic stringers have been overpressured in their earlier geologic evolution. Evidence for these initial overpressures in currently hydrostatic reservoirs is provided by hydrocarbon-veined cores from halite overlying the reservoirs. Pressure deflation responsible for presently hydropressured reservoirs is conceivable by structural configurations to adjacent clastic minibasins or by further isolation and fluid injection into surrounding rock salt once minimum principle stress levels have been reached to dilate the salt. This is witnessed by black, hydrocarbon-stained cores of Ara salt directly above and below some of the stringer reservoirs. Pressure generation and deflation mechanisms are controlled by salt tectonic, microstructural (grain
boundary network) and thermo-kinetic (burial and kerogen conversion) constraints and parameters. The processes revealed in this study are considered significant for other evaporite basins.

References

Amthor, J.E., K. Ramseyer, T. Faulkner, and P. Lucas, 2005, Stratigraphy and sedimentology of a chert reservoir at the Precambrian-Cambrian boundary; the Al Shomou Silicilyte, South Oman salt basin: GeoArabia Manama, v. 10/2, p. 89-122.

Pressure Generation and Deflation Mechanisms in Deeply Buried Intra-Salt Reservoirs of the Late Neoproterozoic to Early Cambrian South Oman Salt Basin

Peter A. Kukla, Lars Reuning, Stefan Becker, Janos L. Urai, Johannes Schoenherr*

Energy & Mineral Resources, RWTH Aachen
(*) ExxonMobil Production Deutschland GmbH
Neoproterozoic (Hormuz) Salt in Oman

Qarn Nihayda

Reuning et al., 2009, GeoArabia

Reuning et al., 2009, GeoArabia
Hydrocarbons in salt

Schoenherr et al. 2007, AAPG Bulletin 92
Depositional Model of the Ara Group

Modified from PETERS et al. (2003), AMTHOR et al. (2005), BOWRING (2007) and RE UNING et al. (2009)
Burial History & Diagenesis

- **Shallow Burial Diagenesis**
- **Intermediate Burial Diagenesis**
- **Deep Burial Diagenesis**
Structural Geometries

Kukla et al., 2011, Geofluids

AAPG 2012 ICE Singapore
Regional Pressure Cells

Kukla et al., 2011, Geofluids AAPG 2012 ICE Singapore
Pore pressures and LOPs

Kukla et al., 2011, Geofluids

AAPG 2012 ICE Singapore
Salt flow concepts – Pressure-Temperature-Fluid

• Boudinaged brittle carbonate/anhydrite rafts moving in salt

• Salt beds considered as pressurized fluid layers overlain by brittle sediment.
Leakage conditions of rock salt in the SOSB

\[P_{\text{brine}} \approx \sigma_3 \]
\[P_{\text{oil}} > \sigma_3 \]

if \(P_{\text{oil}} + P_{\text{capillary}} \rightarrow \) Salt dilates!

Lewis & Holness, 1996

Schoenherr et al. 2007, AAPG Bulletin 92
Fluid Pressure generation and deflation - Summary

Kukla et al., 2011, Geofluids
South Oman Salt Basin - Evaporite Basin Model

Schoenherr et al. 2009, Sedimentology & IJES

AAPG 2012 ICE Singapore
Conclusions

• The Ara Sequence contains a unique self-charging system, operating since the Cambrian until present day, with respect to overpressure (and hydrocarbon) generation and dissipation.

• Pressure generation and deflation mechanisms are controlled by salt tectonic, microstructural (grain boundary network) and thermo-kinetic (burial and kerogen conversion) constraints and parameters.

• The sequence of events includes initially fast burial and early overpressure generation by disequilibrium compaction, to be followed by thermal fluid effects and kerogen conversion. Pyrobitumen confirms local contribution by a high-temperature hydrothermal event.

• Pressure deflation responsible for presently hydropressured reservoirs is conceivable by structural configurations to adjacent clastic minibasins or by further isolation and fluid injection into surrounding rock salt once minimum principal stress levels have been reached to dilate the salt.

• Impact of pressures on reservoir quality, i.e. late cements, (pyro-) bitumen

• Integrated pressure prediction in such settings needs to consider basin evolution through time with focus on structural settings, geomechanics and geochemical constraints.

• The processes revealed in this study are considered significant for other evaporite basins.
Interparticle porosity (partially filled with early marine dolomite cement); carbonate stringer encased in rock salt
Thank You!

- Petroleum Development Oman LLC (PDO)
- Ministry of Oil and Gas (MOG) Oman
- German University of Technology in Oman (GUtech)
- Halliburton/Landmark for DrillWorks Predict Software
- Badley Ashton Inc., Reslab & Shuram Oil & Gas